
Social Network Analysis

Philip Leifeld

BEAR 2018 Multi-Method Workshop

4 October 2018



What is This?
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Romantic and sexual relationships at Jefferson High

(source: Bearman, Moody, and Stovel, 2004)
2 / 97
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International bilateral defensive alliances in 2003

(source: Cranmer, Desmarais, and Menninga, 2012)
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What is This?
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Violent militarized interstate disputes, 1965–2000
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1995 1996 1997 1998 1999 2000

(source: Bradshaw, Leifeld, Li, Clary, and Cranmer, 2017)
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What is This?

(source: Desmarais and Cranmer, 2012)
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Change in interstate migration flows, 2006–2007

(source: Desmarais and Cranmer, 2012)
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What is This?

(source: Leifeld 2018)
6 / 97



Co-authorship among German political scientists, 2014

(source: Leifeld 2018)
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What is This?

≤ 2006 ≤ 2007 ≤ 2008 ≤ 2009

≤ 2010 ≤ 2011 ≤ 2012 ≤ 2013

(source: Leifeld and Ingold, 2016)
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Co-authorship among Swiss political scientists, 2013

≤ 2006 ≤ 2007 ≤ 2008 ≤ 2009

≤ 2010 ≤ 2011 ≤ 2012 ≤ 2013

(source: Leifeld and Ingold, 2016)
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What is This?
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http://dx.doi.org//10.1056/NEJMsa066082


Friendship, kinship, and obesity

(source: Christakis and Fowler, 2007)
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http://dx.doi.org//10.1056/NEJMsa066082


Networks are Ubiquitous in the Study of Politics

Legislative networks Policy processes Terrorism

Fowler 2006 Nagel 2015 Krebs 2008

International relations Interest groups Epistemic communities

Cranmer/Desmarais/Menninga 2012 Box-Steffensmeier/Christenson 2014 Leifeld/Fisher 2017

9 / 97



Network Types

g = 1

g = 3

g = 2

g = 4

Multi-group or multi-level network Multiplex or multi-layer network

t = 1 t = 2 t = 3
Panel network

t

Two-mode networks or bipartite network Relational event sequence
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Basic Methodological Distinction

Descriptive Network Analysis

I Node level: centrality, or the importance of nodes.

I Meso level: subgroup analysis, or which clusters or

communities is the network composed of?

I Network level: density, centralisation, clustering etc.

Inferential Network Analysis

I Explaining the structure of the network.

I Explaining the attributes of nodes in a network.

I Explaining temporal change of attributes or structure.
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Elements of networks

1

2

3

4

5
6

7

A network N consists of. . .

I vertices (nodes, points)

I denoted as i , j , k

I edges (ties, lines)

I denoted as Nij ,Nik etc.

A network. . .
I is a descriptive model of social reality.

I depicts relations rather than attributes.

I often represents the outcome of a dynamic process.
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Two-mode networks

1

2

3

4

a

b

c

d

e

Two-mode networks:
I a.k.a. bipartite graphs

I a.k.a. affiliation networks

I two classes of nodes

I no within-class edges

Examples

I employees and departments

I organizations and associations

I managers and boards of directors
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Data structures for network analysis

Matrix

P J A M

Peter 2 0 1

John 0 0 1

Anna 0 0 3

Mary 1 1 1

Graph

Anna

Peter

John

Mary

Edge list

Peter → John 2

Peter → Mary 1

John → Mary 1

Anna → Mary 3

Mary → Peter 1

Mary → John 1

Mary → Anna 1
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R Packages for Network Analysis

I statnet

I xergm

I RSiena

I igraph
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Discourse Network Analyzer (DNA)

D
N

Discourse Network
Analyzer

I name: Discourse Network Analyzer (DNA)

I download: http://www.github.com/leifeld/dna

I operating system: any (platform-independent!)

I requirements: Java 8

I purpose:

1. assign tags to text data

2. convert these structured data into networks
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Discourse Network Analyzer: Main Window
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Discourse Network Analyzer: Network Export Window
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rDNA: Connecting DNA to R



Graphical intuition of discourse networks
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a4

a5

actors concepts
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Graphical intuition of discourse networks
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network

concept
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Extension: agreement and disagreement

a1

a2

c1

+

+

congruence networks

a1

a2

c1

+

–

conflict networks

a1

a2

c1

–

–

a1

a2

c1

–

+
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Actor congruence network in 1997 (w ≥ 0.31)

Financial interest groups (= blue nodes) are scattered around a

single corporatist community.
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Actor congruence network in 1998 (w ≥ 0.29)

Financial interest groups (= blue nodes) start to make more

coherent claims; polarization emerges.
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Actor congruence network in 2000 (w ≥ 0.27)

Polarization becomes more extreme. Some actors leave their

coalition and join the new coalition.
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Actor congruence network in 2001 (w ≥ 0.23)

The old coalition erodes. Their actors are now scattered around

the new coalition.
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Density

I Density measures how many edges are present in a network.

I Equation: d = edges present
edges possible

dense graph with d = 0.33 sparse graph with d = 0.22
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Subgraph, component

A subgraph is any part of a network (whether connected or not).

A component is a subgraph that is maximally connected.

1
2

3

4

5

6

7

8 9

10

This graph contains two components.
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Walk, path, trail, isolate, pendant

I A walk or chain is a sequence of incident vertices and edges,

e. g. 10-6-7-6-5.

I A trail is a walk where an edge is not allowed to appear more

than once, e. g. 7-6-5-9-7-2.

I A path is a walk where neither an edge, nor a vertex may

appear more than once, e. g. 9-5-6-7-2.

2

3

6

7

9

10

1

5

4

8

11

I The degree of a vertex is its

number of incident edges.

I An isolate is a vertex with a

degree of 0 (e. g. 4 or 8).

I A hanger or pendant is a vertex

with a degree of 1 (e. g. 3).
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Geodesic, cut vertex, diameter

I The geodesic or geodesic

distance or path distance

is the shortest path

connecting two vertices.

In our example, there are

two geodesics of length

3 between vertices 3 and

5.

2

3

6

7

9

10

1

5

4

8

11

I A cut vertex or bridge is a vertex whose removal would cause

the graph to be cut into several components, e. g. vertex 10.

I The diameter of a component is the maximum geodesic

observed in the component. Our example has a diameter of

4 (this corresponds to the vertices 3 and 9).
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Six degrees. The Milgram experiments

Dr. Stanley Milgram 1933 – 1984,

an American social psychologist at

Yale, Harvard and the City

University of New York, conducted

in 1967 the small-world experiment

that is the foundation of the six

degrees of separation concept.

Milgram sent several packages to random people in the United

States, asking them to forward the package, by hand, to someone

specific or someone who is more likely to know the target. The

average path length for the received packages was around 5.5 or

six, resulting in widespread acceptance for the term six degrees of

separation.
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Dyad, triad, cycle, star

I A dyad is any pair of two

vertices. In a stricter

definition, a dyad is an

adjacent pair of vertices,

e g. 3–10 or 6–7.

I A triad or triangle is a

completely connected

subgraph of three

vertices (1–5–11).

2

3

6

7

9

10

1

5

4

8

11

I A cycle is a closed path, e. g. 6–5–9–7.

I In a star, a vertex is connected to all other vertices, but they

are not connected with each other (e. g. 1–2–3–6–10)

I A loop is an edge where the source vertex and the target

vertex are identical. This corresponds to a diagonal cell entry

in a matrix (e. g. 1).
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Triplet, clustering coefficient

I A triad is composed of three triplets.

I A closed triplet or triple is a set of three

vertices which are all adjacent.

I An open triplet or triple is a set of three

vertices which are connected by two edges.

1

2

3

1

2

3

I The global clustering coefficient measures the degree to

which vertices tend to cluster together in a graph.

C (G ) = closed triplets
closed triplets + open triplets

I The local clustering coefficient measures the degree to which

the neighborhood of a certain vertex is clustered:

C (v) = realized edges among vertices adjacent to v
possible edges among vertices adjacent to v
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Assortativity, shared partners

I Assortativity or assortative

mixing refers to the

tendency of vertices to be

connected to other vertices

with the same degree or

attribute.

I Edge-wise shared partners

are indirect contacts

(twopaths) in the same

direction as the direct tie.

I Dyad-wise shared partners

are like edge-wise shared

partners but a direct tie is

not necessary.

Is there a tendency for

assortative mixing in this graph?
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Symmetry, reciprocity, dichotomization

I There is reciprocity if an edge from vertex u to vertex v

presupposes an edge from v to u.

I A network is symmetric if all edges are reciprocal. In a

symmetric matrix, the upper triangle equals the transposed

lower triangle.

I A binary relation is a set of edges that do not have weights.

I A weighted relation can be dichotomized if all weights above

0 are recoded as 1. A weighted relation can also be recoded

by imposing a threshold value, e. g. all values above 5 are

recoded as 1, all other edge weights as 0.
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Co-occurrence graphs
also known as one-mode projections

A bipartite graph

A1

A2

A3

A4

G1

G2

G3

→ Actor

co-occurrence

graph

1

1
1

2

A1 A2

A3 A4

→ Group

co-occurrence

graph

2

1
G1

G2

G3

How can this be achieved?

Using matrix transposition and matrix multiplication!
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Transposing a matrix

The transpose of a matrix is obtained by taking the rows and

using them as the columns of a new matrix.

Example: a two-mode network

original matrix:

g1 g2 g3
a1 1 0 1

a2 0 0 1

a3 1 1 0

a4 1 1 0

transposed matrix:

a1 a2 a3 a4
g1 1 0 1 1

g2 0 0 1 1

g3 1 1 0 0

The transpose of X is written as X> or X′.
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Matrix multiplication

I Example: XX> = Z

I Multiplication works in a

different way than the

Hadamard product!

I usually XY 6= YX
I There is a simple trick

called the Falk scheme.

The Falk scheme

1 0 1 1

0 0 1 1

1 1 0 0

1 0 1 2 1 1 1

0 0 1 1 1 0 0

1 1 0 1 0 2 2

1 1 0 1 0 2 2

I For each cell of the new matrix, calculate the dot product of

the corresponding row of the first matrix and the column of

the second matrix, then add up the values.
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Co-occurrence networks

I Why do we need matrix multiplication?

I Answer: For the conversion of two-mode networks into

one-mode networks!

I Example: We have a set of actors connected to a set of

groups.

I We want to create a network where two actors are

connected if they are in the same group.

I Additionally, the edge weight should reflect the number of

common groups between the two actors.

I This is called a co-occurrence network because the groups

co-occur between the actors.

I Such a network can be obtained by computing XX>

(example on the previous slide!).
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Co-occurrence networks (continued)

I At the same time, we can also create a network of groups.

I Two groups are connected if an actor is affiliated with both

of them.

I The edge weight between two groups reflects the number of

common actors.

I This network can be obtained by calculating X>X.

Example

X>X =

 1 0 1 1

0 0 1 1

1 1 0 0

 ·


1 0 1

0 0 1

1 1 0

1 1 0

 =

 3 2 1

2 2 0

1 0 2


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What is centrality?

Figure: Example graph

Problem: Which is the most central vertex?



Example 1: Degree centrality

Figure: Degree centrality – the yellow vertex is most central!
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Example 2: Betweenness centrality

Figure: Betweenness centrality – blue is most central!
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Example 3: Closeness centrality

0.0964

0.1004

0.1095

0.1147

0.1047

0.1095

0.0892

0.0669

0.0669

0.0709

0.0709

Figure: Closeness centrality – green is most central!
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Radial layout (= centrality layout)
Betweenness (position) and degree (node size) in the same visualization

22.00%
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What is the meaning of centrality?

I Analysis on the level of vertices, not the overall network

structure!

I “One of the primary uses of graph theory in social network

analysis is the identification of the most important actors in

a social network.” (Wasserman/Faust 1994)

I But what does importance mean?

I Many different measures yield different types of importance!
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Classification of methods for subgroup analysis
(not exhaustive)

subgroup

analysis
structural

similarity

cluster

analysis

hierarchical
k-means

block-

models

CONCOR
permu-
tation

scaling

techniques

MDS

PCA

graph-based

clique

analysis
n-clique

n-clan n-club

k-plex

community

detection
Girvan-
Newman

modularity
maxi-
mization
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Community detection

Edge betweenness: on how many shortest paths between other

edges is an edge located?

The Girvan-Newman algorithm

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the

removal.

4. Repeat from step 2 until no edges remain.
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Community detection example
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Structural similarity

I Structural similarity: Similarity of tie profiles.

I If two actors have edges to the same actors, they are

structurally similar.

I The extreme form is structural equivalence, where two actors

have exactly the same neighbors.
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Structural similarity: example

I1

I3

W1

W2

W3

W4 W5 W6

W7

W8

W9

S1

S2

S4

W1 and W4 or W8 and W9 are structurally equivalent.

W1 and W3 are structurally rather similar.

W3 and W9 are structurally rather dissimilar.
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Similarity and distance

I Similarity between two rows in a matrix can be understood as

structural similarity.

I Standardized metrics take values between 0 and 1.

I Standardized similarities s and distances d are actually the

same; they can be converted: dij = 1− sij
I Dissimilarity measures: geodesic distance, Jaccard

coefficient, Euclidean distance.

I Similarity measures: correlation, simple matching coefficient.

I The calculated distances can be saved in a distance matrix.

I Also possible for two-mode networks!
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Jaccard coefficient

dpq = 1− a
a+b+c

p: a row in the matrix

q: any other row in the matrix

a: number of columns where p and q are both 1

b: number of columns where p is 1 and q is 0

c : number of columns where q is 1 and p is 0

I This results in a quadratic distance matrix!

I Values between 0 and 1.

I Can be converted into similarities by computing

spq = 1− dpq.
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Example: Jaccard distances and structural similarity

Consider the following directed network:

A B C D E

A 0 1 0 0 1

B 0 0 0 1 1

C 0 1 0 0 1

D 0 0 1 1 0

E 0 1 0 0 0

dAB = 1− 1
1+1+1 =

2
3

for comparison:

dAC = 1− 2
2+0+0 = 0
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Euclidean distance

dpq =
√∑n

i=1(pi − qi)2

i : a column in the matrix.

In words: add up the differences between all data points/columns

for any two rows p and q.

I Again, this results in a quadratic distance matrix!

I Can take values greater than 1.

I Conversion into similarities: spq = max(d)−maxpq.

I Can also be applied to spatial coordinates instead of row

profiles!
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Example: Euclidean distances and structural similarity

Consider the following weighted network:

A B C D E

A 0 0 3 0 5

B 0 0 2 0 4

C 5 4 0 4 0

D 0 3 0 1 0

E 0 0 0 0 2

dAB =
√

(0− 0)2 + (0− 0)2 + (3− 2)2 + (0− 0)2 + (5− 4)2 = 1.41

for comparison:

dAC =
√
(0− 5)2 + (0− 4)2 + (3− 0)2 + (0− 4)2 + (5− 0)2 = 9.54
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Multidimensional Scaling

I Goal: map the distances in

two dimensions.

I Spatial interpretation of

distances.

I A and B are close to each

other → subgroup!

I Problem:

higher-dimensional data.

I Approximation is necessary.
−2 0 2 4 6

−
1

0
1

2
Dimension 1

D
im

en
si

on
 2

A

B

C

D

E
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Hierarchical cluster analysis

A B C D E

A

B 1.41

C 9.54 8.77

D 6.63 5.48 5.92

E 4.24 2.83 7.81 3.74

C

A B

D E

0
2

4
6

8

1. Which actors are most similar? Fusion of A and B!

2. Recalculation of the similarity matrix (here: complete

linkage).

3. Fusion of D and E to DE and recalculation of distance

matrix.

4. Fusion of DE and AB to ABDE.

5. Fusion of ABDE and C.
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Hierarchical cluster analysis

ABDE C
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How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.

Cluster 1 Cluster 2
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How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.

Cluster 1 Cluster 2

single linkage
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How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.

Cluster 1 Cluster 2

complete linkage
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How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.

Cluster 1 Cluster 2

average linkage
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Assume again that similarities can be mapped on a plane.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Step 1: add k nodes (“centers”) at random coordinates.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Step 2: classify other nodes according to their distance to the centers.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Step 3: move the centers to the center of each cluster.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Step 4: re-classify nodes according to their new distances.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Step 5: re-move the centers to the center of each cluster.
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k-means cluster analysis

Step 1: add k nodes (“centers”) at random coordinates.Repeat steps 4 and 5 until stable.
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Some useful concepts for inferential network modeling

I Topology; structure.

I Exogenous covariate; attribute; exogenous relation.

I Endogeneity; endogenous process; network statistic.

I Data-generating process (DGP).

I Observation.

I Deterministic vs. stochastic processes.

I Local interaction.

I Emergence.

I Parametric model.

I Estimation.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Probability density function of the cross-sectional ERGM.

71 / 97



The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Probability that we observe this particular network.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I hhh(N) are network statistics.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Coefficients (to be estimated).
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Exponential function of the sum of the weighted statistics.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I The sum of the same for all possible topologies.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Probability of a given network over all networks one could

have observed.
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The exponential random graph model

P(N, θθθ) =
exp{θθθ>hhh(N)}∑

N∗∈N exp{θθθ>hhh(N∗)}

I Task: define hhh(N) in order to operationalize theory.
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Number of edges

hedges =
∑
i 6=j
Nij

i j
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Dyadic covariate

hedgecov =
∑
i 6=j
NijXij

i j
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Covariates for sender and receiver

hnodeocov =
∑
i 6=j
Nijxi

i j

hnodeicov =
∑
i 6=j
Nijxj

i j
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Reciprocity

hreciprocity =
∑
i 6=j
NijNji

i j
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Two-stars and three-stars

hin-two-star =
∑
i ,j ,k

NjiNki(1− Njk)(1− Nkj)

i

j k

Incoming 2-star

j

i

k

Outgoing 2-star

j

i

l
k

Outgoing 3-star
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Edge-wise shared partners and two-paths

hesp =
∑
i ,j ,k

NijNjkNik

j

i k

htwopath =
∑
i /∈{j ;k}

∑
j /∈{i ;k}

∑
k /∈{i ;j}

NijNjk(1− Nik)(1− Nki)

j

i k
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Three-cycles

hthree-cycle =
∑
i ,j ,k

NijNjkNki

j

i k
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Triad census (Holland and Leinhardt 1971)
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Four-cycles

hfour-cycle =
∑
i ,j ,k,l

NijNjkNklNli(1− Nik)(1− Njl)(1− Nki)(1− Nlj)

j

i

k

l
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GWESP
Geometrically weighted edge-wise shared partners

hGWESP(N, α) = eα
n−2∑
i=1

{
1− (1− e−α)i

}
ESPi(N)

where ESPi(N) is the number of edges with i shared partners.

. . .
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
I Age difference (−).
I Same gender (+).
I Proximity of apartments (+).
I Similar size of visible families (+).
I Similar profile of medical problems and disabilities (+).
I Apartment of alter is between ego’s apartment and the

restaurant (+).

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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1. Dyadic covariates.
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3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.
I Physical and mental fitness (+).
I Encouragement by family members (+).
I Owns a TV set (−).

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.
I Spacious balcony (+).
I Pension level (+).
I Altruism (+).
I Physical and mental fitness (+).
I Apartment is close to the restaurant (+).

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory building example 1
How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
I Reciprocity.
I Edge-wise shared partners.
I Cyclic triads.
I k-in-stars.
I k-out-stars.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.
I Direct contiguity (+).
I Colonial contiguity (−).
I Distance (−).
I Both countries are democracies (−).
I Military capability ratio (−).
I Trade dependence (−).
I Bilateral alliances (−).
I Joint membership in international organizations (−).
I Shared allies (−).

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.
I Democracy? No. . .
I GDP per capita? No. . .
I Demography; share of young men? Maybe. . .

3. Node covariates of alter.

4. Endogenous graph statistics.
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How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.
I Democracy (−).
I GDP per capita (−).
I Natural resources?
I Has nuclear arms (−).

4. Endogenous graph statistics.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
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ERGM theory-building example 2
How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.

3. Node covariates of alter.

4. Endogenous graph statistics.
I Reciprocity (+).
I Structural balance: closed triangles (−).
I Structural balance: 4-cycles (+).
I Structural balance: edge-wise shared partners (−).
I k-in-stars (+).
I k-out-stars (+).
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ERGM results: the desired output
Leifeld and Schneider (2012), AJPS

Political inf.ex. Technical inf.ex.

Edges −3.63 (0.19)∗∗∗ −5.86 (0.31)∗∗∗

Preference similarity 0.07 (0.07) −0.05 (0.11)
Interest group homophily 1.18 (0.12)∗∗∗ 1.01 (0.32)∗∗

Governmental alter 0.53 (0.06)∗∗∗ 0.41 (0.07)∗∗∗

Scientific ego 0.05 (0.09) 1.51 (0.10)∗∗∗

Common committees 0.31 (0.01)∗∗∗ 0.16 (0.01)∗∗∗

Scientific communication 3.12 (0.38)∗∗∗

Political communication 2.75 (0.06)∗∗∗

Influence attribution 0.84 (0.07)∗∗∗ 0.47 (0.07)∗∗∗

GWESP: edge-wise shared p. 1.26 (0.03)∗∗∗ 0.43 (0.04)∗∗∗

GWDSP: dyadic shared p. −0.15 (0.02)∗∗∗ −0.23 (0.02)∗∗∗

Reciprocity 0.82 (0.06)∗∗∗ 1.86 (0.15)∗∗∗
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Case study: Nominations in an epistemic community
Leifeld/Fisher (2017), Nature Climate Change 7(10)

I “Millennium Ecosystem Assessment” (2002–2005)

I International scientific assessment.

I Membership recruitment by individual nomination.

I Research question: How do these nominations work?

I By merit/functional requirements or personal affinity?

I 1,360 experts in this policy-relevant network.
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Nominations among members
Red: survey respondents; green: nominations among respondents
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Nominations among survey respondents
Node colors: nationalities; orange: same nationality; no isolates
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Nominations among survey respondents
Node colors: disciplines; blue: same same discipline; no isolates
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Nominations among survey respondents
Red: co-authorship in the final assessment report
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Collaboration on the assessment report
Red: authors; green: chapters; two-mode network
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Collaboration on the assessment report
One-mode projection for all survey respondents
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ERGM coefficients and confidence intervals

Horizontal bars denote 95% confidence intervals.

Two−stars (incoming)
Two−stars (outgoing)

Three−stars (outgoing)
Two−paths

Edgewise shared partner
Same nationality

Same employer/university affiliation
Sender male, receiver female

Institutional memberships (sender)
Institutional co−memberships

Institutional co−memberships^2
Same area of expertise

Joint chapter(s) in the report
Same type and level of degree

Sender has a PhD or MD

Sender and receiver both male
Institutional memberships (receiver)

Receiver has a PhD or MD

Receiver is a social scientist
Sender is a social scientist

Both are social/natural scientists
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GOF: full model
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GOF: model without endogenous processes
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Precision–recall curves and out-of-sample prediction

True positive rate
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Other Inferential Network Models

I Exponential Random Graph Model (ERGM).

I Temporal Exponential Random Graph Model (TERGM).

I Generalized Exponential Random Graph Model (GERGM).

I Count-ERGM.

I Multiplex/multilayer/multi-level ERGM.

I Quadratic Assignment Procedure.

I Latent Space Models.

I Stochastic Actor-Oriented Model (SAOM).

I Relational Event Model (REM).

I (Temporal) Network Autocorrelation Model (TNAM).
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Group Work

Think of research questions and designs suitable for network

analysis. Consider the following guiding questions.

1. What are the nodes? Are there one or two types of nodes?

2. What relations are you interested in? Are they binary?

3. Is there one cross-sectional network, panel data, or a

relational event sequence?

4. How are you going to collect the data?

5. Do you want to explain the network structure? What

theories or covariates are there?

6. Does the network structure explain something else?

7. Do you want to explain the attributes of nodes?

8. What is the added value of the network perspective?
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