Social Network Analysis

Philip Leifeld

BEAR 2018 Multi-Method Workshop

4 October 2018

What is This?

Romantic and sexual relationships at Jefferson High

(source: Bearman, Moody, and Stovel, 2004)

What is This?

International bilateral defensive alliances in 2003

(source: Cranmer, Desmarais, and Menninga, 2012)

What is This?

Violent militarized interstate disputes, 1965-2000

(source: Bradshaw, Leifeld, Li, Clary, and Cranmer, 2017)

What is This?

(a) Largest Decreases

(c) Out Degree

(b) Largest Increases

(d) In Degree

Change in interstate migration flows, 2006-2007

(a) Largest Decreases

(c) Out Degree

(b) Largest Increases

(d) In Degree

(source: Desmarais and Cranmer, 2012)

What is This?

Co-authorship among German political scientists, 2014

What is This?

Co-authorship among Swiss political scientists, 2013

(source: Leifeld and Ingold, 2016)

What is This?

Friendship, kinship, and obesity

(source: Christakis and Fowler, 2007)

Networks are Ubiquitous in the Study of Politics

Legislative networks

Fowler 2006

Policy processes

Nagel 2015

Interest groups

Box-Steffensmeier/Christenson 2014

Terrorism

Krebs 2008

Epistemic communities

Leifeld/Fisher 2017

Network Types

$$
\text { Multi-group or multi-level network } \quad \text { Multiplex or multi-layer network }
$$

Two-mode networks or bipartite network

Relational event sequence

Panel network

Basic Methodological Distinction

Descriptive Network Analysis

- Node level: centrality, or the importance of nodes.
- Meso level: subgroup analysis, or which clusters or communities is the network composed of?
- Network level: density, centralisation, clustering etc.

Inferential Network Analysis

- Explaining the structure of the network.
- Explaining the attributes of nodes in a network.
- Explaining temporal change of attributes or structure.

Elements of networks

A network N consists of.

vertices (nodes, points)
denoted as i, j, k
edges (ties, lines)
denoted as $N_{i j}, N_{i k}$ etc.

A network. . .

- is a descriptive model of social reality.
- depicts relations rather than attributes.
- often represents the outcome of a dynamic process.

Two-mode networks

Two-mode networks:

a.k.a. bipartite graphs

- a.k.a. affiliation networks
- two classes of nodes
- no within-class edges

Examples

- employees and departments
- organizations and associations
- managers and boards of directors

Data structures for network analysis

| Matrix | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | P | J | A | M |
| Peter | | 2 | 0 | 1 |
| John | 0 | | 0 | 1 |
| Anna | 0 | 0 | | 3 |
| Mary | 1 | 1 | 1 | |

Graph

Edge list

Peter	\rightarrow	John	2
Peter	\rightarrow	Mary	1
John	\rightarrow	Mary	1
Anna	\rightarrow	Mary	3
Mary	\rightarrow	Peter	1
Mary	\rightarrow	John	1
Mary	\rightarrow	Anna	1

TiA UCINET 6 for Windows -- Version 6.191

－Force Atlas
nerta
Attraction strength $\quad 10.0$
Maximum displacement 10.0
Auto stabillze function
Autostab Strength Autostab sensibility Gravity Attraction Distrib． Adjust by Sizes Speed
\square

0
SenateVotes＿analysis－Microsoft Excel

- Number_Votes $~$ Party -
- Number_Votes $~$ Party -
- Number_Votes $~$ Party -

if A ．in Edges Vertices Images Cousters Custer Vertices Overal Metrics（1）I］

zoom：Scale：\square About Zoom and Scale

Home Insert Page Layout Formulas Data Review View NodeXI Design
\oplus

號

R Packages for Network Analysis

- statnet
- xergm
- RSiena
- igraph

Discourse Network Analyzer (DNA)

D88 Discourse Network Analyzer

- name: Discourse Network Analyzer (DNA)
- download: http://www.github.com/leifeld/dna
- operating system: any (platform-independent!)
- requirements: Java 8
- purpose:

1. assign tags to text data
2. convert these structured data into networks

Discourse Network Analyzer: Main Window

File Document Export Settings

Document properties

Title

Scharping bekraftigt Rentenplane
Date
1999-08-27 00:00:00
Coder \square
Author

Source

Current file: /home/philip/faz.dna

$A 14 \div \square \square$

Title	\#	Date	
Einzelheiten zum Steuer-und Sparpaket der Bundesregierung		27-Aug-1999	
NACHGEFRAGT BEE: Joachim Schwind		27-Aug-1999	
Scharping bekraftigt Rentenplane der Regierung		27-Aug-1999	
Bruderle kündigt Widerstand gegen Sparpaket an		230-Aug-1999	
Donges erwartet 1.5 Prozent Wachstum		230-Auq-1999	

sru-traktion warue an burmerstay uvet uas spar paket vevactiet, vesontuets uver we Beschränkung der Rentenanpassungen an die Inflationsrate in den nächsten beiden Jahren. Der stellvertretende SPD-Vorsitzende Scharping bekräftigte den Kurs von Bundeskanzler Schröder und sagte: Wir haben entschieden, die Renten so zu erhöhen, wie die Preise steigen - und damit Schluss. Er wies damit Spekulationen zurück, dass der Kabinettsbeschluss doch noch geändert werden könnte. Der stellvertretende SPD-Fraktionsvorsitzende Schwanhold deutete dagegen an, dass das Sparpaket aus politisch-taktischer, aber auch aus inhaltlicher Sicht noch einmal aufgeschnürt werden könnte, um einen Kompromiss auch mit der Opposition zu erzielen.

Der saarländische Ministerpräsident Klimmt (SPD) wiederholte seine Kritik an der geplanten Rentenanpapann 7 zalaich hatonta ar abar din ahatimadiakait aiger Reform des Rentensystems. K DNA Statement ID: 4422 start: 1137 end: 1243 is iill orhaben nicht zustimmen, wei \quad person Klimmt, Reinhard $\quad \left\lvert\, \begin{array}{ll}\text { Angesichts }\end{array}\right.$ des Reformbedarfs se Konsens aller großen vorbei seien.

Die Vorsitzende der

person	Klimmt, Reinhard	
organization	SPD	
concept	Tie pension formula to econ	

Die Opposition lehnte den Rentenbeschluss der Bundesregierung ab. Der Vorsitzende der Christlich-Demokratischen Arbeitnehmerschaft (CDA). Eppelmann, warf der Bundesreaierung vor. eine Rentennol itik ohne iede suhstanz 7 l verfolaen. Fine

ID	T
4192	ervor. vas rue.
4238	Der Bundeskander mu...
4239	Der Bundeskander mu...
4346	Das Saarland werde e.
4364	Darin kündigte er an, ...
4368	Der saarlăndische Mini...
4370	Freilich will Klimmt in d...
4371	Freilich will Kimmt in d...
4396	dessen Ministerprăsid..
4422	Der saarlandische Mini...
4450	Eine Beschränkung de...
4451	owie Orientierung der ...
4454	Ankündigung Klimmts, ...
4455	

all current filter

\square DNA Statement	
ID:	
person:	
organization:	
concept:	
agreement:	\square

Search within document
$|\overrightarrow{1}| 2 \mid 2$

Regex highlighter

Discourse Network Analyzer: Network Export Window

Export data						
Type of network		Statement type		File format		
One-mode network	-	\square DNA Statement	-	.graphml	-	
Variable 1		Variable 2		Qualifier Qualifier aggregation		
organization	\checkmark	concept	\checkmark	agreement	- congruence	\checkmark
Normalization		Isolates		Duplicates		
average activity	\checkmark	only current nodes	-	ignore per document	-	
Include from		Include until				
2016-04-09-20:52:07	\div	2016-08-02-05:03:44				
Exclude from variable		Exclude values		Preview of excluded values		
person organization concept agreement author source section type		FL NC NV $\mathbf{O H}$		organization: Office of Attorney General Pam Bondi - SUBGOV-R organization: Office of Attorney General Roy Cooper - SUBGOV-D concept: Climate legislation will not hurt the economy concept: States should accept the Clean Power Plan source: CincEnq source: ColDisp section: intercoder reliability test type: NV type: OH		
\square Display tooltips with instructions				Q Rever	® Cancel	() Export...

rDNA: Connecting DNA to R

affil <- dna_network(conn,

$$
\begin{aligned}
& \text { networkType = "twomode", } \\
& \text { statementType = "DNA Statement", } \\
& \text { variable1 = "organization", } \\
& \text { variable2 = "concept", } \\
& \text { qualifier = "agreement", } \\
& \text { qualifierAggregation = "combine", } \\
& \text { duplicates = "document", } \\
& \text { verbose = FALSE) }
\end{aligned}
$$

plot(nw,

$$
\begin{aligned}
& \text { edge.col = get.edge.attribute(nw, "color"), } \\
& \text { vertex.col = c(rep("white", nrow(affil)), } \\
& \quad \text { rep("black", ncol(affil))), } \\
& \text { displaylabels = TRUE, } \\
& \text { label.cex }=0.5 \\
&)
\end{aligned}
$$

Graphical intuition of discourse networks

```
actors
```

a_{1}
(a2)
a3
a4
a5

Graphical intuition of discourse networks

Graphical intuition of discourse networks

Graphical intuition of discourse networks

Graphical intuition of discourse networks

Extension: agreement and disagreement

congruence networks

conflict networks

Actor congruence network in 1997 ($w \geq 0.31$)

Financial interest groups (= blue nodes) are scattered around a single corporatist community.

Actor congruence network in $1998(w \geq 0.29)$

Financial interest groups (= blue nodes) start to make more coherent claims; polarization emerges.

Actor congruence network in $2000(w \geq 0.27)$

Polarization becomes more extreme. Some actors leave their coalition and join the new coalition.

Actor congruence network in 2001 ($w \geq 0.23$)

The old coalition erodes. Their actors are now scattered around the new coalition.

Density

- Density measures how many edges are present in a network.
- Equation: $d=\frac{\text { edges present }}{\text { edges possible }}$

dense graph with $d=0.33$

sparse graph with $d=0.22$

Subgraph, component

A subgraph is any part of a network (whether connected or not). A component is a subgraph that is maximally connected.

This graph contains two components.

Walk, path, trail, isolate, pendant

- A walk or chain is a sequence of incident vertices and edges, e. g. 10-6-7-6-5.
- A trail is a walk where an edge is not allowed to appear more than once, e. g. 7-6-5-9-7-2.
- A path is a walk where neither an edge, nor a vertex may appear more than once, e. g. 9-5-6-7-2.

- The degree of a vertex is its number of incident edges.
- An isolate is a vertex with a degree of 0 (e. g. 4 or 8).
- A hanger or pendant is a vertex with a degree of 1 (e. g. 3).

Geodesic, cut vertex, diameter

- The geodesic or geodesic distance or path distance is the shortest path connecting two vertices. In our example, there are two geodesics of length 3 between vertices 3 and 5.

- A cut vertex or bridge is a vertex whose removal would cause the graph to be cut into several components, e. g. vertex 10.
- The diameter of a component is the maximum geodesic observed in the component. Our example has a diameter of 4 (this corresponds to the vertices 3 and 9).

Six degrees. The Milgram experiments

Dr. Stanley Milgram 1933-1984, an American social psychologist at Yale, Harvard and the City University of New York, conducted in 1967 the small-world experiment that is the foundation of the six degrees of separation concept.

Milgram sent several packages to random people in the United States, asking them to forward the package, by hand, to someone specific or someone who is more likely to know the target. The average path length for the received packages was around 5.5 or six, resulting in widespread acceptance for the term six degrees of separation.

Dyad, triad, cycle, star

- A dyad is any pair of two vertices. In a stricter definition, a dyad is an adjacent pair of vertices, e g. 3-10 or 6-7.
- A triad or triangle is a completely connected subgraph of three
 vertices (1-5-11).
- A cycle is a closed path, e. g. 6-5-9-7.
- In a star, a vertex is connected to all other vertices, but they are not connected with each other (e. g. 1-2-3-6-10)
- A loop is an edge where the source vertex and the target vertex are identical. This corresponds to a diagonal cell entry in a matrix (e. g. 1).

Triplet, clustering coefficient

- A triad is composed of three triplets.
- A closed triplet or triple is a set of three

- An open triplet or triple is a set of three vertices which are connected by two edges.
- The global clustering coefficient measures the degree to which vertices tend to cluster together in a graph. $C(G)=\frac{\text { closed triplets }}{\text { closed triplets + open triplets }}$
- The local clustering coefficient measures the degree to which the neighborhood of a certain vertex is clustered:
$C(v)=\frac{\text { realized edges among vertices adjacent to } v}{\text { possible edges among vertices adjacent to } v}$

Assortativity, shared partners

- Assortativity or assortative mixing refers to the tendency of vertices to be connected to other vertices with the same degree or attribute.

Is there a tendency for assortative mixing in this graph?

Assortativity, shared partners

- Assortativity or assortative mixing refers to the tendency of vertices to be connected to other vertices with the same degree or attribute.
- Edge-wise shared partners are indirect contacts (twopaths) in the same direction as the direct tie.

- Dyad-wise shared partners are like edge-wise shared partners but a direct tie is not necessary.

Assortativity, shared partners

- Assortativity or assortative mixing refers to the tendency of vertices to be connected to other vertices with the same degree or attribute.
- Edge-wise shared partners are indirect contacts (twopaths) in the same direction as the direct tie.
- Dyad-wise shared partners are like edge-wise shared partners but a direct tie is not necessary.

Find edge- and dyad-wise shared partners here!

Symmetry, reciprocity, dichotomization

- There is reciprocity if an edge from vertex u to vertex v presupposes an edge from v to u.
- A network is symmetric if all edges are reciprocal. In a symmetric matrix, the upper triangle equals the transposed lower triangle.
- A binary relation is a set of edges that do not have weights.
- A weighted relation can be dichotomized if all weights above 0 are recoded as 1. A weighted relation can also be recoded by imposing a threshold value, e. g. all values above 5 are recoded as 1 , all other edge weights as 0 .

Co-occurrence graphs

also known as one-mode projections

A bipartite graph

\rightarrow Actor
co-occurrence graph

\rightarrow Group
co-occurrence graph

Co-occurrence graphs

also known as one-mode projections

A bipartite graph

\rightarrow Actor
co-occurrence graph

\rightarrow Group
co-occurrence graph

How can this be achieved?

Co-occurrence graphs

also known as one-mode projections

A bipartite graph

\rightarrow Actor
co-occurrence graph

\rightarrow Group
co-occurrence graph

How can this be achieved?
Using matrix transposition and matrix multiplication!

Transposing a matrix

The transpose of a matrix is obtained by taking the rows and using them as the columns of a new matrix.

Example: a two-mode network original matrix:
transposed matrix:

	g_{1}	g_{2}	g_{3}
a_{1}	1	0	1
a_{2}	0	0	1
a_{3}	1	1	0
a_{4}	1	1	0

	a_{1}	a_{2}	a_{3}	a_{4}
g_{1}	1	0	1	1
g_{2}	0	0	1	1
g_{3}	1	1	0	0

The transpose of \mathbf{X} is written as \mathbf{X}^{\top} or \mathbf{X}^{\prime}.

Matrix multiplication

- Example: $\mathbf{X X}^{\top}=\mathbf{Z}$
- Multiplication works in a different way than the Hadamard product!
- usually $\mathbf{X Y} \neq \mathbf{Y X}$
- There is a simple trick called the Falk scheme.

The Falk scheme

			1	0	1	1
			0	0	1	1
			1	1	0	0
1	0	1	2	1	1	1
0	0	1	1	1	0	0
1	1	0	1	0	2	2
1	1	0	1	0	2	2

- For each cell of the new matrix, calculate the dot product of the corresponding row of the first matrix and the column of the second matrix, then add up the values.

Co-occurrence networks

- Why do we need matrix multiplication?
- Answer: For the conversion of two-mode networks into one-mode networks!
- Example: We have a set of actors connected to a set of groups.
- We want to create a network where two actors are connected if they are in the same group.
- Additionally, the edge weight should reflect the number of common groups between the two actors.
- This is called a co-occurrence network because the groups co-occur between the actors.
- Such a network can be obtained by computing $\mathbf{X X}^{\top}$ (example on the previous slide!).

Co-occurrence networks (continued)

- At the same time, we can also create a network of groups.
- Two groups are connected if an actor is affiliated with both of them.
- The edge weight between two groups reflects the number of common actors.
- This network can be obtained by calculating $\mathbf{X}^{\top} \mathbf{X}$.

Example

$$
\mathbf{X}^{\top} \mathbf{X}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

What is centrality?

Figure: Example graph

Problem: Which is the most central vertex?

Example 1: Degree centrality

Figure: Degree centrality - the yellow vertex is most central!

Example 2: Betweenness centrality

Figure: Betweenness centrality - blue is most central!

Example 3: Closeness centrality

Figure: Closeness centrality - green is most central!

Radial layout (= centrality layout)

Betweenness (position) and degree (node size) in the same visualization

What is the meaning of centrality?

- Analysis on the level of vertices, not the overall network structure!
- "One of the primary uses of graph theory in social network analysis is the identification of the most important actors in a social network." (Wasserman/Faust 1994)
- But what does importance mean?
- Many different measures yield different types of importance!

Classification of methods for subgroup analysis
(not exhaustive)

Community detection

Edge betweenness: on how many shortest paths between other edges is an edge located?

The Girvan-Newman algorithm

1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.
3. Recalculate betweennesses for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.

Community detection example

Structural similarity

- Structural similarity: Similarity of tie profiles.
- If two actors have edges to the same actors, they are structurally similar.
- The extreme form is structural equivalence, where two actors have exactly the same neighbors.

Structural similarity: example

W1 and W4 or W8 and W9 are structurally equivalent.

W1 and W3 are structurally rather similar.
W3 and W9 are structurally rather dissimilar.

Similarity and distance

- Similarity between two rows in a matrix can be understood as structural similarity.
- Standardized metrics take values between 0 and 1 .
- Standardized similarities s and distances d are actually the same; they can be converted: $d_{i j}=1-s_{i j}$
- Dissimilarity measures: geodesic distance, Jaccard coefficient, Euclidean distance.
- Similarity measures: correlation, simple matching coefficient.
- The calculated distances can be saved in a distance matrix.
- Also possible for two-mode networks!

Jaccard coefficient

$d_{p q}=1-\frac{a}{a+b+c}$
p : a row in the matrix
q : any other row in the matrix
a: number of columns where p and q are both 1
b : number of columns where p is 1 and q is 0
c: number of columns where q is 1 and p is 0

- This results in a quadratic distance matrix!
- Values between 0 and 1 .
- Can be converted into similarities by computing $s_{p q}=1-d_{p q}$.

Example: Jaccard distances and structural similarity

Consider the following directed network:

$$
d_{A B}=1-\frac{1}{1+1+1}=\frac{2}{3}
$$

for comparison:

$$
d_{A C}=1-\frac{2}{2+0+0}=0
$$

Euclidean distance

$d_{p q}=\sqrt{\sum_{i=1}^{n}\left(p_{i}-q_{i}\right)^{2}}$
i : a column in the matrix.
In words: add up the differences between all data points/columns for any two rows p and q.

- Again, this results in a quadratic distance matrix!
- Can take values greater than 1.
\Rightarrow Conversion into similarities: $s_{p q}=\max (d)-\max _{p q}$.
- Can also be applied to spatial coordinates instead of row profiles!

Example: Euclidean distances and structural similarity

Consider the following weighted network:

	A	B	C	D	E
A	0	0	3	0	5
B	0	0	2	0	4
C	5	4	0	4	0
D	0	3	0	1	0
E	0	0	0	0	2

$$
d_{A B}=\sqrt{(0-0)^{2}+(0-0)^{2}+(3-2)^{2}+(0-0)^{2}+(5-4)^{2}}=1.41
$$

for comparison:

$$
d_{A C}=\sqrt{(0-5)^{2}+(0-4)^{2}+(3-0)^{2}+(0-4)^{2}+(5-0)^{2}}=9.54
$$

Multidimensional Scaling

- Goal: map the distances in two dimensions.
- Spatial interpretation of distances.
- A and B are close to each other \rightarrow subgroup!
- Problem:
higher-dimensional data.
- Approximation is necessary.

Hierarchical cluster analysis

	A	B	C	D	E
A					
B	1.41				
C	9.54	8.77			
D	6.63	5.48	5.92		
E	4.24	2.83	7.81	3.74	

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

	A	B	C	D	E
A					
B	1.41				
C	9.54	8.77			
D	6.63	5.48	5.92		
E	4.24	2.83	7.81	3.74	

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

	AB	C	D	E
AB				
C	9.54			
D	6.63	5.92		
E	4.24	7.81	3.74	

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

	AB	C	D	E
AB				
C	9.54			
D	6.63	5.92		
E	4.24	7.81	3.74	

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

	AB	C	DE
AB			
C	9.54		
DE	6.63	7.81	

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

Hierarchical cluster analysis

1. Which actors are most similar? Fusion of A and B !
2. Recalculation of the similarity matrix (here: complete linkage).
3. Fusion of D and E to $D E$ and recalculation of distance matrix.
4. Fusion of $D E$ and $A B$ to $A B D E$.
5. Fusion of $A B D E$ and C.

How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.

How are similarities recalculated?

How are similarities recalculated?

How are similarities recalculated?

k-means cluster analysis

Assume again that similarities can be mapped on a plane.

k-means cluster analysis

Step 1: add k nodes ("centers") at random coordinates.

k-means cluster analysis

Step 2: classify other nodes according to their distance to the centers.

k-means cluster analysis

Step 3: move the centers to the center of each cluster.

k-means cluster analysis

Step 4: re-classify nodes according to their new distances.

k-means cluster analysis

k-means cluster analysis

Repeat steps 4 and 5 until stable.

Some useful concepts for inferential network modeling

- Topology; structure.
- Exogenous covariate; attribute; exogenous relation.
- Endogeneity; endogenous process; network statistic.
- Data-generating process (DGP).
- Observation.
- Deterministic vs. stochastic processes.
- Local interaction.
- Emergence.
- Parametric model.
- Estimation.

The exponential random graph model

$$
P(N, \boldsymbol{\theta})=\frac{\exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- Probability density function of the cross-sectional ERGM.

The exponential random graph model

$$
P(N, \theta)=\frac{\exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{N}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- Probability that we observe this particular network.

The exponential random graph model

$$
P(N, \boldsymbol{\theta})=\frac{\exp \left\{\boldsymbol{\theta}^{\top} h(N)\right\}}{\sum_{N^{*} \in \mathcal{N}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- $\mathbf{h}(N)$ are network statistics.

The exponential random graph model

$$
P(N, \boldsymbol{\theta})=\frac{\exp \left\{\theta^{\top} \mathbf{h}(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- Coefficients (to be estimated).

The exponential random graph model

$$
P(N, \theta)=\frac{\exp \left\{\theta^{\top} h(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\boldsymbol{\theta}^{\top} h\left(N^{*}\right)\right\}}
$$

- Exponential function of the sum of the weighted statistics.

The exponential random graph model

$$
P(N, \boldsymbol{\theta})=\frac{\exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\theta^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- The sum of the same for all possible topologies.

The exponential random graph model

$$
P(N, \theta)=\frac{\exp \left\{\theta^{\top} h(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\theta^{\top} h\left(N^{*}\right)\right\}}
$$

- Probability of a given network over all networks one could have observed.

The exponential random graph model

$$
P(N, \boldsymbol{\theta})=\frac{\exp \left\{\boldsymbol{\theta}^{\top} \mathrm{h}(N)\right\}}{\sum_{N^{*} \in \mathcal{N}^{\prime}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{h}\left(N^{*}\right)\right\}}
$$

- Task: define $\mathbf{h}(N)$ in order to operationalize theory.

Number of edges

$$
h_{\mathrm{edges}}=\sum_{i \neq j} N_{i j}
$$

Dyadic covariate

$$
h_{\text {edgecov }}=\sum_{i \neq j} N_{i j} X_{i j}
$$

Covariates for sender and receiver

$$
\begin{aligned}
h_{\text {nodeocov }} & =\sum_{i \neq j} N_{i j} x_{i} \\
\text { i } & j \\
h_{\text {nodeicov }} & =\sum_{i \neq j} N_{i j} x_{j} \\
\text { i } & \text { j }
\end{aligned}
$$

Reciprocity

$$
h_{\text {reciprocity }}=\sum_{i \neq j} N_{i j} N_{j i}
$$

Two-stars and three-stars

$$
h_{\text {in-two-star }}=\sum_{i, j, k} N_{j i} N_{k i}\left(1-N_{j k}\right)\left(1-N_{k j}\right)
$$

Edge-wise shared partners and two-paths

$$
h_{\text {esp }}=\sum_{i, j, k} N_{i j} N_{j k} N_{i k}
$$

$$
h_{\text {twopath }}=\sum_{i \notin\{j ; k\}} \sum_{j \notin\{i ; k\}} \sum_{k \notin\{i ; j\}} N_{i j} N_{j k}\left(1-N_{i k}\right)\left(1-N_{k i}\right)
$$

Three-cycles

$$
h_{\text {three-cycle }}=\sum_{i, j, k} N_{i j} N_{j k} N_{k i}
$$

Triad census (Holland and Leinhardt 1971)

TRANSITIVE AND VACUOUSLY TRANSITIVE TRIADS

Four-cycles

$$
h_{\text {four-cycle }}=\sum_{i, j, k, l} N_{i j} N_{j k} N_{k l} N_{l i}\left(1-N_{i k}\right)\left(1-N_{j i}\right)\left(1-N_{k i}\right)\left(1-N_{l j}\right)
$$

GWESP

Geometrically weighted edge-wise shared partners

$$
h_{\operatorname{GWESP}}(N, \alpha)=\mathrm{e}^{\alpha} \sum_{i=1}^{n-2}\left\{1-\left(1-\mathrm{e}^{-\alpha}\right)^{i}\right\} \operatorname{ESP}_{i}(N)
$$

where $\mathrm{ESP}_{i}(N)$ is the number of edges with i shared partners.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.

- Age difference $(-)$.
- Same gender (+).
- Proximity of apartments $(+)$.
- Similar size of visible families $(+)$.
$>$ Similar profile of medical problems and disabilities $(+)$.
- Apartment of alter is between ego's apartment and the restaurant (+).

2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.

- Physical and mental fitness (+).
- Encouragement by family members (+).
- Owns a TV set (-).

3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.

- Spacious balcony (+).
- Pension level (+).
- Altruism (+).
- Physical and mental fitness (+).
- Apartment is close to the restaurant (+).

4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

- Reciprocity.
- Edge-wise shared partners.
- Cyclic triads.
- k-in-stars.
- k-out-stars.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.

2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
$>$ Direct contiguity $(+)$.

- Colonial contiguity (-).
- Distance (-).
- Both countries are democracies (-).
- Military capability ratio (-).
- Trade dependence (-).
- Bilateral alliances (-).
- Joint membership in international organizations (-).
\rightarrow Shared allies (-).

2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.

- Democracy? No...
- GDP per capita? No...
- Demography; share of young men? Maybe...

3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.

- Democracy (-).
- GDP per capita (-).
- Natural resources?
- Has nuclear arms (-).

4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

ERGM theory-building example 2

How can we explain militarized interstate disputes?

1. Dyadic covariates.
2. Node covariates of ego.
3. Node covariates of alter.
4. Endogenous graph statistics.

- Reciprocity (+).
- Structural balance: closed triangles $(-)$.
- Structural balance: 4-cycles (+).
- Structural balance: edge-wise shared partners $(-)$.
${ }^{-}$-in-stars $(+)$.
${ }^{\prime}$-out-stars $(+)$.

ERGM results: the desired output

Leifeld and Schneider (2012), AJPS

	Political inf.ex.	Technical inf.ex.
Edges	-3.63 (0.19)***	-5.86 (0.31)***
Preference similarity	0.07 (0.07)	-0.05 (0.11)
Interest group homophily	1.18 (0.12)***	1.01 (0.32)**
Governmental alter	0.53 (0.06)***	0.41 (0.07)***
Scientific ego	0.05 (0.09)	1.51 (0.10)***
Common committees	0.31 (0.01)***	0.16 (0.01)***
Scientific communication	3.12 (0.38)***	
Political communication		2.75 (0.06)***
Influence attribution	0.84 (0.07)***	0.47 (0.07)***
GWESP: edge-wise shared p.	1.26 (0.03)***	0.43 (0.04)***
GWDSP: dyadic shared p.	$-0.15(0.02)^{* * *}$	$-0.23(0.02)^{* * *}$
Reciprocity	0.82 (0.06)***	1.86 (0.15)***

Case study: Nominations in an epistemic community

Leifeld/Fisher (2017), Nature Climate Change 7(10)

- "Millennium Ecosystem Assessment" (2002-2005)
- International scientific assessment.
- Membership recruitment by individual nomination.
- Research question: How do these nominations work?

By merit/functional requirements or personal affinity?

- 1,360 experts in this policy-relevant network.

Nominations among members

Red: survey respondents; green: nominations among respondents

Nominations among survey respondents

Node colors: nationalities; orange: same nationality; no isolates

Nominations among survey respondents

Node colors: disciplines; blue: same same discipline; no isolates

Nominations among survey respondents

Red: co-authorship in the final assessment report

Collaboration on the assessment report

Red: authors; green: chapters; two-mode network

Collaboration on the assessment report

One-mode projection for all survey respondents

ERGM coefficients and confidence intervals

Horizontal bars denote 95% confidence intervals.

GOF: full model

GOF: model without endogenous processes

Precision-recall curves and out-of-sample prediction

Other Inferential Network Models

- Exponential Random Graph Model (ERGM).
- Temporal Exponential Random Graph Model (TERGM).
- Generalized Exponential Random Graph Model (GERGM).
- Count-ERGM.
- Multiplex/multilayer/multi-level ERGM.
- Quadratic Assignment Procedure.
- Latent Space Models.
- Stochastic Actor-Oriented Model (SAOM).
- Relational Event Model (REM).
- (Temporal) Network Autocorrelation Model (TNAM).

Group Work

Think of research questions and designs suitable for network analysis. Consider the following guiding questions.

1. What are the nodes? Are there one or two types of nodes?
2. What relations are you interested in? Are they binary?
3. Is there one cross-sectional network, panel data, or a relational event sequence?
4. How are you going to collect the data?
5. Do you want to explain the network structure? What theories or covariates are there?
6. Does the network structure explain something else?
7. Do you want to explain the attributes of nodes?
8. What is the added value of the network perspective?
