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Romantic and sexual relationships at Jefferson High

(source: Bearman, Moody, and Stovel, 2004) 2/07
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International bilateral defensive alliances in 2003

(source: Cranmer, Desmarais, and Menninga, 2012) 307
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Violent militarized interstate disputes, 1965—2000

1965 1966 1967 1968 1969 1970

1971 1972 1973 1974 1975 1976

1977 1978 1979 1980 1981 1982

1987 1988

1985

1989 1990 1991 1994

1997 2000

(source: Bradshaw, Leifeld, Li, Clary, and Cranmer, 2017) 407



What is This?
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Change in interstate migration flows, 2006—2007

(a) Largest Decreases (b) Largest Increases
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(source: Desmarais and Cranmer, 2012)
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What is This?
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Co-authorship among Swiss political scientists, 2013

(source: Leifeld and Ingold, 2016)
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What is This?
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http://dx.doi.org//10.1056/NEJMsa066082

Friendship, kinship, and obesity

(source: Christakis and Fowler, 2007)

8/97


http://dx.doi.org//10.1056/NEJMsa066082

Networks are Ubiquitous in the Study of Politics

Legislative networks Policy processes Terrorism

Fowler 2006 Nagel 2015 Krebs 2008

International relations Interest groups Epistemic communities

Cranmer/Desmarais/Menninga 2012 Box-Steffensmeier/Christenson 2014 Leifeld/Fisher 2017
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Network Types

Multi-group or multi-level network Multiplex or multi-layer network
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Basic Methodological Distinction

Descriptive Network Analysis

Node level: centrality, or the importance of nodes.

Meso level: subgroup analysis, or which clusters or
communities is the network composed of?

Network level: density, centralisation, clustering etc.

Inferential Network Analysis

Explaining the structure of the network.
Explaining the attributes of nodes in a network.

Explaining temporal change of attributes or structure.
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Elements of networks

A network N consists of. . .

(nodes, points)
denoted as i, j, k
(ties, lines)

denoted as N;;, Nj etc.

A network. . .
is a descriptive model of social reality.

depicts relations rather than attributes.

often represents the outcome of a dynamic process.
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Two-mode networks

Two-mode networks:

a.k.a. bipartite graphs

a.k.a. affiliation networks
two classes of nodes

no within-class edges

E]ES

employees and departments
organizations and associations

managers and boards of directors
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Data structures for network analysis

P J A M
Peter 2 0 1
John 0 0 1
Anna 0 O 3
Mary 1 1 1
Graph
Peter
Mary Anna
John

Edge list

Peter
Peter
John

Anna
Mary
Mary
Mary

A

John

Mary
Mary
Mary
Peter
John

Anna

2
1
1
3
1
1
1
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R Packages for Network Analysis

> statnet
P xergm
> RSiena

> igraph
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Discourse Network Analyzer (DNA)

D88 Discourse Network
88’N‘ Analyzer

name: Discourse Network Analyzer (DNA)
download: http://www.github.com/leifeld/dna
operating system: any (platform-independent!)
requirements: Java 8

purpose:

assign tags to text data
convert these structured data into networks
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http://www.github.com/leifeld/dna

Discourse Network Analyzer: Main Window

File Document Expert Settings
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Discourse

Network Analyzer: Network Export Window

-

Export data + X
Type of network Statement type File format
[one-mode network [~][[] oNA statement [~][-graphmi [~]
Variable 1 Variable 2 Qualifier Qualifier aggregation

|urganization

|v‘ |concept

|v‘ |agreement

|v‘ |cungruence |v‘

Normalization

Isolates

Duplicates

|average activity

|v‘ |nnly current nodes

|v‘ |ignore per document

|v‘
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li‘ 2016-08-02 - 05:03:44

=

Exclude from variable

Exclude values

Preview of excluded values

author
source
section

type

person ~| |FL +| [organization: Office of Attorney General Pam Bondi - SUBGOV-R
organization NC organization: Office of Attorney General Roy Cooper - SUBGOV-D
concept NV concept: Climate legislation will not hurt the economy
agreement OH concept: States should accept the Clean Power Plan

source: CincEng
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type: OH

[| Display tooltips with instructions
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rDNA: Connecting DNA to R

affil <- dna_network(conn,

networkType = "twomode",
statementType = "DNA Statement",
variablel = "organization",
variable2 = "concept",
qualifier = "agreement",
qualifierAggregation = "combine",
duplicates = "document",
verbose = FALSE)

plot (aw,

edge.col

get.edge.attribute(nw, "color"),
= c(rep("white", nrow(affil)),
rep("black", ncol(affil))),
TRUE,

vertex.col

displaylabels =
label.cex = 0.5
)



Graphical intuition of discourse networks

actors
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Graphical intuition of discourse networks

actors concepts
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Graphical intuition of discourse networks

actors concepts
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Graphical intuition of discourse networks

actors concepts
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Graphical intuition of discourse networks

actors concepts
dl
N
an
/]
ds
dq
/
ds
actor affiliation concept
network network network
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Extension: agreement and disagreement

congruence networks conflict networks
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Actor congruence network in 1997 (w > 0.31)

Financial interest groups (= blue nodes) are scattered around a
single corporatist community.
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Actor congruence network in 1998 (w > 0.29)

Financial interest groups (= blue nodes) start to make more
coherent claims; polarization emerges.
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Actor congruence network in 2000 (w > 0.27)
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Polarization becomes more extreme. Some actors leave their
coalition and join the new coalition.
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Actor congruence network in 2001 (w > 0.23)

The old coalition erodes. Their actors are now scattered around
the new coalition.
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Density

P> Density measures how many edges are present in a network.

ion: o — &dges present
> Equation: d = edges possible

dense graph with d = 0.33 sparse graph with d = 0.22
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Subgraph, component

A subgraph is any part of a network (whether connected or not).
A component is a subgraph that is maximally connected.

This graph contains two components.
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Walk, path, trail, isolate, pendant

> A walk or chain is a sequence of incident vertices and edges,
e.g. 10-6-7-6-5.

> A trail is a walk where an edge is not allowed to appear more
than once, e.g. 7-6-5-9-7-2.

> A path is a walk where neither an edge, nor a vertex may
appear more than once, e.g. 9-5-6-7-2.

> The degree of a vertex is its
number of incident edges.

> An isolate is a vertex with a
degree of 0 (e.g. 4 or 8).

> A hanger or pendant is a vertex
) with a degree of 1 (e.g. 3).
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Geodesic, cut vertex, diameter

» The geodesic or geodesic
distance or path distance
is the shortest path
connecting two vertices.
In our example, there are
two geodesics of length -
3 between vertices 3 and

5 [«]

> A cut vertex or bridge is a vertex whose removal would cause
the graph to be cut into several components, e. g. vertex 10.

> The diameter of a component is the maximum geodesic
observed in the component. Our example has a diameter of
4 (this corresponds to the vertices 3 and 9).
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Six degrees. The Milgram experiments

Dr. Stanley Milgram 1933 — 1984,
an American social psychologist at
Yale, Harvard and the City
University of New York, conducted
in 1967 the small-world experiment
that is the foundation of the six
degrees of separation concept.

Milgram sent several packages to random people in the United
States, asking them to forward the package, by hand, to someone
specific or someone who is more likely to know the target. The
average path length for the received packages was around 5.5 or
six, resulting in widespread acceptance for the term six degrees of
separation.
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Dyad, triad, cycle, star

| 2

A dyad is any pair of two

vertices. In a stricter

definition, a dyad is an

adjacent pair of vertices,

eg. 3—10 or 6-7.

A triad or triangle is a .

completely connected

subgraph of three .

vertices (1-5-11).

A cycle is a closed path, e.g. 6-5-9-7.

In a star, a vertex is connected to all other vertices, but they
are not connected with each other (e.g. 1-2-3-6-10)

A loop is an edge where the source vertex and the target
vertex are identical. This corresponds to a diagonal cell entry
in a matrix (e.g. 1).
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Triplet, clustering coefficient

A triad is composed of three triplets.

A or triple is a set of three .<I

vertices which are all adjacent.

An or triple is a set of three
vertices which are connected by two edges.
The measures the degree to
which vertices tend to cluster together in a graph.
_ closed triplets
C(G) ~ closed triplets 4+ open triplets
The measures the degree to which
the neighborhood of a certain vertex is clustered:
C(V) __ realized edges among vertices adjacent to v
" possible edges among vertices adjacent to v
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Assortativity, shared partners

» Assortativity or assortative
mixing refers to the
tendency of vertices to be
connected to other vertices
with the same degree or
attribute.

’/7

Is there a tendency for
assortative mixing in this graph?
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Assortativity, shared partners

» Assortativity or assortative

mixing refers to the
tendency of vertices to be
connected to other vertices

with the same degree or
attribute.

» Edge-wise shared partners .\

are indirect contacts

(twopaths) in the same .
direction as the direct tie. ./

» Dyad-wise shared partners
are like edge-wise shared

partners but a direct tie is
not necessary.
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Assortativity, shared partners

» Assortativity or assortative

mixing refers to the

tendency of vertices to be

connected to other vertices

with the same degree or

attribute. ‘\

» Edge-wise shared partners
are indirect contacts
(twopaths) in the same

direction as the direct tie. ./.

» Dyad-wise shared partners
are like edge-wise shared
partners but a direct tie is
not necessary.

Find edge- and dyad-wise shared
partners here!
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Symmetry, reciprocity, dichotomization

There is if an edge from vertex u to vertex v
presupposes an edge from v to u.

A network is if all edges are reciprocal. In a
symmetric matrix, the upper triangle equals the transposed
lower triangle.

A is a set of edges that do not have weights.
A weighted relation can be if all weights above
0 are recoded as 1. A weighted relation can also be

by imposing a value, e.g. all values above 5 are
recoded as 1, all other edge weights as 0.
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Co-occurrence graphs

also known as one-mode projections

A bipartite graph — Actor — Group
co-occurrence co-occurrence
graph graph

1 1
2
2
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Co-occurrence graphs

also known as one-mode projections

A bipartite graph — Actor — Group
co-occurrence co-occurrence
graph graph

1 1
2
2

How can this be achieved?
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Co-occurrence graphs

also known as one-mode projections

A bipartite graph — Actor — Group
co-occurrence co-occurrence
graph graph

1 1
2
2

How can this be achieved?
Using matrix transposition and matrix multiplication!
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Transposing a matrix

The transpose of a matrix is obtained by taking the rows and
using them as the columns of a new matrix.

Example: a two-mode network
original matrix:

transposed matrix:

g1 92 g3 a A a3 a
a; 1 0 1
g 1 0 1 1
dan 0 0 1
go 0 1 1
as 1 1 0 1 1 0 0
aa 1 1 0 93

The transpose of X is written as X' or X'.

37,97



Matrix multiplication

Example: XX =Z The Falk scheme

Multiplication works in a 1011
- 0O 0 1 1
different way than the
Hadamard product! 1 100
' 1 01 2 1 1 1
usually XY # YX 00 1 1 1 0 0
There is a simple trick 1 1 0 1 0 2 2
called the 1 1 0 1 0 2 2

For each cell of the new matrix, calculate the dot product of
the corresponding row of the first matrix and the column of
the second matrix, then add up the values.
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Co-occurrence networks

Why do we need matrix multiplication?
Answer: For the
!

Example: We have a set of connected to a set of

We want to create a network where two actors are
connected if they are in the same group.

Additionally, the edge weight should reflect the
between the two actors.

This is called a because the groups
co-occur between the actors.

Such a network can be obtained by computing XX
(example on the previous slide!).
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Co-occurrence networks (continued)

At the same time, we can also create a

Two groups are connected if an actor is affiliated with both
of them.

The edge weight between two groups reflects the

This network can be obtained by calculating X T X.
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What is centrality?

Figure: Example graph

Problem: Which is the most central vertex?



Example 1: Degree centrality

Figure: Degree centrality — the yellow vertex is most central!
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Example 2: Betweenness centrality

Figure: Betweenness centrality — blue is most central!
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Example 3: Closeness centrality

Figure: Closeness centrality — green is most centrall
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Radial layout (= centrality layout)

Betweenness (position) and degree (node size) in the same visualization
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What is the meaning of centrality?

Analysis on the level of vertices, not the overall network
structure!

“One of the primary uses of graph theory in social network
analysis is the identification of the in

a social network.” (Wasserman/Faust 1994)

But what does importance mean?

Many different measures yield different types of importance!
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Classification of methods for subgroup analysis

(not exhaustive)

permus SORECR

tation

block-
models

structural
similarity

scaling
techniques

cluster
ELEISS

hierarchical
k-means

n-club

clique
analysis

n-clique

graph-based

community
detection

modularity
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Community detection

Edge betweenness: on how many shortest paths between other
edges is an edge located?

The Girvan-Newman algorithm

Calculate the betweenness for all edges in the network.

Remove the edge with the highest betweenness.

Recalculate betweennesses for all edges affected by the
removal.

Repeat from step 2 until no edges remain.
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Community detection example
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Community detection example
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Community detection example
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Community detection example
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Community detection example
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Community detection example
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Community detection example
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Structural similarity

. Similarity of tie profiles.
If two actors have edges to the same actors, they are
structurally similar.

The extreme form is , where two actors
have exactly the same neighbors.
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Structural similarity: example

W1 and W4 or W8 and W9 are structurally equivalent.
W1 and W3 are structurally rather similar.

W3 and W9 are structurally rather dissimilar.
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Similarity and distance

Similarity between two rows in a matrix can be understood as
structural similarity.

Standardized metrics take values between 0 and 1.

Standardized similarities s and distances d are actually the
same; they can be cdij=1-—s5j

: geodesic distance, Jaccard
coefficient, Euclidean distance.

. correlation, simple matching coefficient.
The calculated distances can be saved in a

Also possible for two-mode networks!
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Jaccard coefficient

dpg =1 —

_a
a+b+c

p: a row in the matrix

g: any other row in the matrix
a:
b
c

number of columns where p and g are both 1

: number of columns where pis 1 and g is 0
: number of columns where gis 1 and pis O

This results in a quadratic distance matrix!
Values between 0 and 1.

Can be converted into similarities by computing
Spg = 1 — dpg.
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Example: Jaccard distances and structural similarity

Consider the following directed network:

A B C D E

—1 — £
141+ T3

for comparison:

— 2 _
dac =1 = 75575 =0

54 /97



Euclidean distance
dpg = Z?:l(/?i - q;)?

I a column in the matrix.

In words: add up the differences between all data points/columns
for any two rows p and gq.

Again, this results in a quadratic distance matrix!
Can take values greater than 1.
Conversion into similarities: s,q = max(d) — maxyq.

Can also be applied to spatial coordinates instead of row
profiles!
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Example: Euclidean distances and structural similarity

Consider the following weighted network:

A B C D E .——@

das =+/(0-0)2+(0-02+(3-2)2+(0-0)2+(5-4)>=1.41

for comparison:

dac = /(052 +(0—4)2+(3-0)2+(0—4)2+ (5 0)> = 9.54
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Multidimensional Scaling

Goal: map the distances in o
two dimensions. E
Spatial interpretation of -1
distances.

Dimension 2

A and B are close to each
other — subgroup! B
Problem:
higher-dimensional data. A

Approximation is necessary. Dimension 1
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Hierarchical cluster analysis

Which actors are most similar? Fusion of A and Bl

Recalculation of the similarity matrix (here: complete

linkage).

Fusion of D and E to DE and recalculation of distance
matrix.

Fusion of DE and AB to ABDE.

Fusion of ABDE and C.

A B C D E
A
B | 1.41
C|9.54 877
D|6.63 548 5.92
E|424 283 781 374
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Hierarchical cluster analysis

A B C D E A

A o

B :

C|954 877 : 1
D|663 548 5.92 4 e
E|424 283 7.81 3.74 Joo

Recalculation of the similarity matrix (here: complete
linkage).

Fusion of D and E to DE and recalculation of distance
matrix.

Fusion of DE and AB to ABDE.
Fusion of ABDE and C.
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Hierarchical cluster analysis

A B C D E

—
A o

B | 141

C 1
D 5.92 - EEEREL
E 7.81 374 - < o

Recalculation of the similarity matrix (here: complete
linkage).

Fusion of D and E to DE and recalculation of distance
matrix.

Fusion of DE and AB to ABDE.
Fusion of ABDE and C.
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Hierarchical cluster analysis

AB C D E S

AB

D 6.63 5.92 - —
E 424 781 3.74 . < @

Which actors are most similar? Fusion of A and Bl

Fusion of D and E to DE and recalculation of distance
matrix.

Fusion of DE and AB to ABDE.
Fusion of ABDE and C.
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Hierarchical cluster analysis

AB C D E I

AB

D 6.63 5.92 - — e w
E 424 7.81 - < o

Which actors are most similar? Fusion of A and Bl

Recalculation of the similarity matrix (here: complete
linkage).

Fusion of DE and AB to ABDE.
Fusion of ABDE and C.
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Hierarchical cluster analysis

AB Cc DE
AB
C 9.54
DE 7.81

Which actors are most similar? Fusion of A and Bl

Recalculation of the similarity matrix (here: complete

linkage).

Fusion of D and E to DE and recalculation of distance

matrix.

Fusion of ABDE and C.
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Hierarchical cluster analysis

ABDE C A
ABDE
C 9.54 e
1 : i

Which actors are most similar? Fusion of A and Bl

Recalculation of the similarity matrix (here: complete
linkage).

Fusion of D and E to DE and recalculation of distance
matrix.

Fusion of DE and AB to ABDE.
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How are similarities recalculated?

Assume for a moment that similarities can be mapped on a plane.
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How are similarities recalculated?

single linkage ®
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How are similarities recalculated?
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How are similarities recalculated?

o
average linkage
— - = C
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k-means cluster analysis

Assume again that similarities can be mapped on a plane.
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k-means cluster analysis

Step 1: add k nodes ( “centers”) at random coordinates.
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k-means cluster analysis

Step 2: classify other nodes according to their distance to the centers.
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k-means cluster analysis

Step 3: move the centers to the center of each cluster.
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k-means cluster analysis

Step 4: re-classify nodes according to their new distances.
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k-means cluster analysis

Step 5: re-move the centers to the center of each cluster.
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k-means cluster analysis

Repeat steps 4 and 5 until stable.
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Some useful concepts for inferential network modeling

Topology; structure.

Exogenous covariate; attribute; exogenous relation.
Endogeneity; endogenous process; network statistic.
Data-generating process (DGP).

Observation.

Deterministic vs. stochastic processes.

Local interaction.

Emergence.

Parametric model.

Estimation.
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The exponential random graph model

B exp{@"h(N)}
PO = v e 6Th(V)]

Probability density function of the cross-sectional ERGM.
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The exponential random graph model

_ exp{@"h(N)}
> nren exp{8Th(N*)}
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The exponential random graph model

exp{6"h(N)}

PN = s eml8Th(N)]
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The exponential random graph model

B exp{6 Th(N)}
PIN.6) = S o expl8Th(N)]
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The exponential random graph model

PIN.6) = S o oxpl@Th(NV)]
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The exponential random graph model

P(N,8) = exp{@"h(N)}
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The exponential random graph model

B exp{6Th(N)}
PO = e 8Th(V)]

» Probability of a given network over all networks one could
have observed.
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The exponential random graph model

exp{6h())}

PN 0 = S @ h(N)]
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Number of edges

hedges = Z Nlj

17
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Dyadic covariate

edgecov E NUXU
i#)

=0
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Covariates for sender and receiver

hnodeocov = § Nini

i#)

O

nodelcov § NUXJ

i#J

=D
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Reciprocity

hreciprocity - § Nleji
i#]
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Two-stars and three-stars

in-two-star = Z NjiNgi (1 — Nj)(1 — Nyj)
iJk

Incoming 2-star Outgoing 2-star Outgoing 3-star

I I I
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Edge-wise shared partners and two-paths

hesp = Y Ny Njx Nig
iJ.k

J

hwopath = D > > NyNj(1 = Nig)(1 — Nig)

ig{j;k} j¢{isk} kg {is}

J
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Three-cycles

hthree—cycle = E N/J’Njk Nk/
iJ,k

J
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Triad census (Holland and Leinhardt 1971)
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Four-cycles

Pour-cycle = > NiiNacNigNi(1 = Ni) (1 = Njp)(1 = Ni) (1 — Ny)
Y
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GWESP

Geometrically weighted edge-wise shared partners

n—2

hewesp(N,a) = e* Y {1 —(1—e *)'} ESP;(N)
=1

where ESP;(N) is the number of edges with /i shared partners.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.
Node covariates of ego.
Node covariates of alter.

Endogenous graph statistics.
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Node covariates of ego.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Age difference (—).

Same gender (+).

Proximity of apartments (+).

Similar size of visible families (+).

Similar profile of medical problems and disabilities (+).
Apartment of alter is between ego’s apartment and the
restaurant (+).

Node covariates of ego.
Node covariates of alter.

Endogenous graph statistics.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.

Node covariates of alter.

Endogenous graph statistics.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.

Physical and mental fitness (+).
Encouragement by family members (+).
Owns a TV set (—).

Node covariates of alter.

Endogenous graph statistics.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.

Node covariates of ego.

Endogenous graph statistics.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.

Node covariates of ego.

Spacious balcony (+).

Pension level (+).

Altruism (+).

Physical and mental fitness (+).
Apartment is close to the restaurant (+).

Endogenous graph statistics.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.
Node covariates of ego.

Node covariates of alter.
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ERGM theory building example 1

How can we model visits among inhabitants of a residential care home?

Dyadic covariates.
Node covariates of ego.

Node covariates of alter.

Reciprocity.

Edge-wise shared partners.
Cyclic triads.

k-in-stars.

k-out-stars.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.
Node covariates of ego.
Node covariates of alter.

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Node covariates of ego.
Node covariates of alter.

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Direct contiguity (+).

Colonial contiguity (—).

Distance (—).

Both countries are democracies (—).

Military capability ratio (—).

Trade dependence (—).

Bilateral alliances (—).

Joint membership in international organizations (—).
Shared allies (—).

Node covariates of ego.
Node covariates of alter.
Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.

Node covariates of alter.

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.

Democracy? No. ..
GDP per capita? No...

Demography; share of young men? Maybe. ..

Node covariates of alter.

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.

Node covariates of ego.

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.

Node covariates of ego.

Democracy (—).

GDP per capita (—).
Natural resources?
Has nuclear arms (—).

Endogenous graph statistics.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.
Node covariates of ego.

Node covariates of alter.
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ERGM theory-building example 2

How can we explain militarized interstate disputes?

Dyadic covariates.
Node covariates of ego.
Node covariates of alter.

Reciprocity (+).

Structural balance: closed triangles (—).
Structural balance: 4-cycles (+).

Structural balance: edge-wise shared partners (—).
k-in-stars (+).

k-out-stars (+).
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ERGM results: the desired output
Leifeld and Schneider (2012), AJPS

Political inf.ex.  Technical inf.ex.

Edges —3.63 (0.19)**  —5.86 (0.31)"*
Preference similarity 0.07 (0.07) —0.05 (0.11)
Interest group homophily 1.18 (0.12)*** 1.01 (0.32)**
Governmental alter 0.53 (0.06)*** 0.41 (0.07)***
Scientific ego 0.05 (0.09) 1.51 (0.10)***
Common committees 0.31 (0.01)*** 0.16 (0.01)***
Scientific communication 3.12 (0.38)***

Political communication 2.75 (0.06)***
Influence attribution 0.84 (0.07)*** 0.47 (0.07)***
GWESP: edge-wise shared p. 1.26 (0.03)*** 0.43 (0.04)**
GWDSP: dyadic shared p. —0.15 (0.02)™*  —0.23 (0.02)***
Reciprocity 0.82 (0.06)*** 1.86 (0.15)***
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Case study: Nominations in an epistemic community
Leifeld/Fisher (2017), Nature Climate Change 7(10)

“Millennium Ecosystem Assessment” (2002-2005)
International scientific assessment.

Membership recruitment by individual nomination.
Research question: How do these nominations work?
By merit/functional requirements or personal affinity?
1,360 experts in this policy-relevant network.
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Nominations among members
Red: survey respondents; green: nominations among respondents

S, A .
.o l.: ‘:.o. .‘o .‘.....
(g PRV
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Nominations among survey respondents
Node colors: nationalities; orange: same nationality; no isolates
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Nominations among survey respondents
Node colors: disciplines; blue: same same discipline; no isolates
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Nominations among survey respondents
Red: co-authorship in the final assessment report
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Collaboration on the assessment report
Red: authors; green: chapters; two-mode network
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Collaboration on the assessment report
One-mode projection for all survey respondents
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ERGM coefficients and confidence intervals

Two-stars (incoming) -
Two-stars (outgoing) ®
Three-stars (outgoing) °
Two-paths ®
Edgewise shared partner -y
Same nationality ‘.
Same employer/university affiliation e
Sender male, receiver female L _J
Sender and receiver both male L _J
Institutional memberships (receiver) o
Institutional memberships (sender) L]
Institutional co-memberships -
Institutional co-memberships”2 ®
Same area of expertise L _J
Joint chapter(s) in the report -
Same type and level of degree -
Receiver has a PhD or MD
Sender has a PhD or MD
Receiver is a social scientist
Sender is a social scientist L 3
Both are social/natural scientists -

-2 -1 0 1 2 3 4

Horizontal bars denote 95% confidence intervals.
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GOF: full model

Dyad-wise shared partners

Edge-wise shared partners

Geodesic distance
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GOF: model without

Frequency

Frequency

endogenous processes
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Precision—recall curves and out-of-sample prediction

3 N —— Model based on Germany
. + + + Model based on Switzerland
: —— All edges
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Other Inferential Network Models

Exponential Random Graph Model (ERGM).

Temporal Exponential Random Graph Model (TERGM).
Generalized Exponential Random Graph Model (GERGM).
Count-ERGM.

Multiplex/multilayer /multi-level ERGM.

Quadratic Assignment Procedure.

Latent Space Models.

Stochastic Actor-Oriented Model (SAOM).

Relational Event Model (REM).

(Temporal) Network Autocorrelation Model (TNAM).
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Group Work

Think of research questions and designs suitable for network
analysis. Consider the following guiding questions.

What are the nodes? Are there one or two types of nodes?
What relations are you interested in? Are they binary?

Is there one cross-sectional network, panel data, or a
relational event sequence?

How are you going to collect the data?

Do you want to explain the network structure? What
theories or covariates are there?

Does the network structure explain something else?
Do you want to explain the attributes of nodes?

What is the added value of the network perspective?
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